cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354171 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + sin(x).

This page as a plain text file.
%I A354171 #6 May 22 2022 08:54:35
%S A354171 1,0,-1,4,-19,44,-659,8128,-18775,67664,-3578279,7629568,-476298835,
%T A354171 505198784,25626362581,4286437900288,-20903398375855,-118410655250176,
%U A354171 -6399968826052559,-33100680116191232,1010700510694925525,706348515575880704,-1123931378903214542099
%N A354171 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + sin(x).
%F A354171 E.g.f.: Sum_{k>=1} A067856(k) * log(1 + sin(x^k)) / k.
%t A354171 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = {1, 0, -1, 0}[[Mod[n, 4, 1]]]/n! - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]
%Y A354171 Cf. A067856, A170914, A170915, A328186, A328191, A353607, A353873, A354055, A354172, A354173, A354174, A354175, A354176.
%K A354171 sign
%O A354171 1,4
%A A354171 _Ilya Gutkovskiy_, May 18 2022