cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354174 Product_{n>=1} (1 + x^(2*n))^(a(n)/(2*n)!) = cosh(x).

This page as a plain text file.
%I A354174 #6 May 22 2022 08:54:49
%S A354174 1,4,-104,8128,-354944,-21642752,-6204652544,4286437900288,
%T A354174 -47215125069824,-78465506362130432,-51085990673656315904,
%U A354174 -35027783166649488637952,-15510963121850795776016384,-7220202338641080038690127872,7469518701197092988127633473536,53919400066294168384184259715268608
%N A354174 Product_{n>=1} (1 + x^(2*n))^(a(n)/(2*n)!) = cosh(x).
%F A354174 E.g.f.: Sum_{k>=1} A067856(k) * log(cosh(x^k)) / k (even powers only).
%t A354174 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = Mod[n + 1, 2]/n! - b[n, n - 1]; a[n_] := (2 n)! c[2 n]; Table[a[n], {n, 1, 16}]
%Y A354174 Cf. A067856, A353609, A354064, A354171, A354172, A354173, A354175, A354176.
%K A354174 sign
%O A354174 1,2
%A A354174 _Ilya Gutkovskiy_, May 18 2022