This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354177 #38 Oct 09 2022 21:20:04 %S A354177 2,82799,406661,447779,490019,596279,617971,654931,790781,1286969, %T A354177 1532291,1543357,1775831,1916939,1932911,2220539,2240977,2298749, %U A354177 2307989,2376629,2435039,2458139,2513579,2731049,2775599,3093851,3141899,3213839,3294337,3331319,3351251,3366497,3645193,3689149,3733259,3781153,3981331 %N A354177 Numbers m such that the four consecutive primes starting at m are congruent to {2, 3, 5, 7} (mod 11). %C A354177 All first differences except for 82799 - 2 = 82797 are multiples of 22. %e A354177 The four consecutive primes {82799, 82811, 82813, 82837} are congruent to {2, 3, 5, 7} (mod 11). %p A354177 R:= 2: count:= 1: %p A354177 for p from 13 by 22 while count < 37 do %p A354177 if not isprime(p) then next fi; %p A354177 q:= nextprime(p); if q mod 11 <> 3 then next fi; %p A354177 q:= nextprime(q); if q mod 11 <> 5 then next fi; %p A354177 q:= nextprime(q); if q mod 11 = 7 then %p A354177 count:= count+1; R:= R,p fi %p A354177 od: %p A354177 R; # _Robert Israel_, Sep 14 2022 %t A354177 s = {2}; p1=7; Do[p1 = NextPrime[p1]; p2 = NextPrime[p1]; p3 = NextPrime[p2]; p4 = NextPrime[p3]; If[{2, 3, 5, 7} == Mod[{p1, p2, p3, p4}, 11], AppendTo[s, p1]], {10^6}]; s %Y A354177 Subsequence of A167134. %K A354177 nonn %O A354177 1,1 %A A354177 _Zak Seidov_, Sep 09 2022