This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354181 #12 May 21 2022 14:52:11 %S A354181 16,48,64,80,81,112,144,162,176,192,208,240,272,304,320,324,336,368, %T A354181 400,405,432,448,464,496,512,528,560,567,576,592,624,625,648,656,688, %U A354181 704,720,729,752,784,810,816,832,848,880,891,912,944,960,976,1008,1024,1040 %N A354181 Numbers whose number of divisors is not a 3-smooth number. %C A354181 Number whose prime factorization includes an exponent e such that e+1 is in A059485. %C A354181 The asymptotic density of this sequence is 1 - Product_{p prime} ((1 - 1/p) * Sum_{k in A003586} 1/p^(k-1)) = 0.0512963858... (Hilberdink, 2022). %H A354181 Amiram Eldar, <a href="/A354181/b354181.txt">Table of n, a(n) for n = 1..10000</a> %H A354181 Titus Hilberdink, <a href="https://doi.org/10.1016/j.jnt.2021.07.020">How often is d(n) a power of a given integer?</a>, Journal of Number Theory, Vol. 236 (2022), pp. 261-279. %H A354181 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %e A354181 16 is a term since A000005(16) = 5 is not a 3-smooth number. %t A354181 smoothQ[n_] := n == 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3]; Select[Range[1000], !smoothQ[DivisorSigma[0, #]] &] %o A354181 (PARI) is(n) = n>>=valuation(n, 2); n/=3^valuation(n, 3); n>1; \\ A059485 %o A354181 isok(m) = is(numdiv(m)); \\ _Michel Marcus_, May 19 2022 %Y A354181 Cf. A000005, A003586, A059485, A036537, A162643. %K A354181 nonn %O A354181 1,1 %A A354181 _Amiram Eldar_, May 18 2022