This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354184 #27 Aug 12 2022 18:59:16 %S A354184 1,1,2,3,5,8,7,9,10,13,23,36,29,35,64,37,39,76,77,115,192,121,17,28, %T A354184 31,15,16,17,19,36,25,11,16,13,15,28,29,43,72,49,13,20,23,33,56,47,61, %U A354184 108,67,73,140,143,213,356,391,569,960,599,629,1228,1243,1857,3100,1867 %N A354184 a(1) = a(2) = 1, a(n) = (A007947(31*a(n-1)) + A007947(31*a(n-2)))/31 for n >= 3, i.e., 31*a(n) is the largest squarefree divisor of 31*a(n-1) plus the largest squarefree divisor of 31*a(n-2). %C A354184 After the first 5 terms, the sequence values repeat periodically with a cycle length of 207. The maximum value of a(n) is 1142300, whose first occurrence appears at n = 111. %H A354184 Michael De Vlieger, <a href="/A354184/b354184.txt">Table of n, a(n) for n = 1..2075</a> %H A354184 Augusto Santi, <a href="https://math.stackexchange.com/questions/4452873/">Periodic sequences of integers generated by a(n+1) = rad(a(n)) + rad(a(n-1))</a>, Mathematics Stack Exchange. %F A354184 For n >= 6, a(207 + n) = a(n). %e A354184 31*2 is the largest squarefree divisor of 31*a(6) = 31*8. 31*7 is the largest squarefree divisor of 31*a(7) = 31*7. So a(8) = (31*2 + 31*7)/31 = 9. %t A354184 Nest[Append[#, (Times @@ FactorInteger[31 #[[-1]]][[All, 1]] + Times @@ FactorInteger[31 #[[-2]]][[All, 1]])/31] &, {1, 1}, 62] (* _Michael De Vlieger_, Jul 18 2022 *) %o A354184 (Python) %o A354184 from sympy import primefactors %o A354184 def rad(num): %o A354184 primes = primefactors(num) %o A354184 value = 1 %o A354184 for p in primes: %o A354184 value *= p %o A354184 return value %o A354184 a = [1, 1] %o A354184 for n in range(2, 1000): %o A354184 a += [(rad(31*a[n-1]) + rad(31*a[n-2])) // 31] %o A354184 (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947 %o A354184 lista(nn) = my(va = vector(nn)); va[1] = 1; va[2] = 1; for (n=3, nn, va[n] = (rad(31*va[n-2]) + rad(31*va[n-1]))/31;); va; \\ _Michel Marcus_, May 21 2022 %Y A354184 Cf. A007947, A121369. %K A354184 nonn,look %O A354184 1,3 %A A354184 _Augusto Santi_, May 18 2022