This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354211 #26 May 24 2022 12:54:53 %S A354211 1,7,47,5923,426457,15636757,7318002277,1536780478171,603180793741, %T A354211 142957467201379447,60042136224579367741,10127106976545720025649, %U A354211 18228792557782296046168201,12796612375563171824410077103,3463616416319098507140327535879,1380498543075754976417359117871773 %N A354211 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!. %F A354211 Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)). %e A354211 1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ... %t A354211 Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator %t A354211 nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator %o A354211 (PARI) a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ _Michel Marcus_, May 24 2022 %o A354211 (Python) %o A354211 from fractions import Fraction %o A354211 from math import factorial %o A354211 def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # _Chai Wah Wu_, May 24 2022 %Y A354211 Cf. A009445, A053557, A061354, A073742, A103816, A120265, A143382, A289381, A354331 (denominators), A354332, A354334. %K A354211 nonn,frac %O A354211 0,2 %A A354211 _Ilya Gutkovskiy_, May 24 2022