This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354218 #36 Jun 14 2022 08:51:05 %S A354218 1,3,15,105,1155,1365,19635,23205,636405,10555545,24484845,869107785, %T A354218 14797252681546335,92442344345566215,40334203530676690635, %U A354218 1451417351374223318085,6087255082617244520985,469256253416014832182075245585,1519012498286389398934397206158552189345 %N A354218 Records in A076978, divided by 2. %H A354218 Hugo Pfoertner, <a href="/A354218/b354218.txt">Table of n, a(n) for n = 1..52</a>. %t A354218 1/2*Union@ FoldList[Max, Array[Times @@ FactorInteger[Times @@ Range[#1 + 1, #2 - 1]][[All, 1]] & @@ Map[Prime, # + {0, 1}] &, 180, 2]] (* _Michael De Vlieger_, May 20 2022 *) %o A354218 (Python) %o A354218 from sympy import sieve as p, primefactors %o A354218 def A076978_halfen(n): # for all integers n > 1 %o A354218 result = 1 %o A354218 for composites in range(p[n]+1, p[n+1]): %o A354218 for primefactor in primefactors(composites): %o A354218 if result % primefactor != 0: result *= primefactor %o A354218 return result//2 %o A354218 A354218 = [1] %o A354218 for n in range(2,180): %o A354218 if A076978_halfen(n) > A354218[-1]: A354218.append(A076978_halfen(n)) %o A354218 print(A354218) # _Karl-Heinz Hofmann_, May 20 2022 %o A354218 (PARI) a354218(maxterm) = {my(mp=0,pp=3); forprime(p=5,oo, my(L=List());for(j=pp+1,p-1, my(f=factor(j), nf=#f~); for(k=1,nf, listput(~L,f~[1,k]))); listsort(L,1); my(mpp=prod(k=1,#L,L[k])); if(mpp>mp, if(mpp<2*maxterm, print1(mpp/2,", "); mp=mpp, return)); pp=p)}; %o A354218 a354218(10^75) %Y A354218 Cf. A007947, A076978, A354217. %K A354218 nonn %O A354218 1,2 %A A354218 _Hugo Pfoertner_, May 19 2022