A354224 Lexicographically earliest sequence of distinct positive integers such that a(1) = 1 and for any n > 1, the greatest common divisor of n and a(n) is a prime number.
1, 2, 3, 6, 5, 4, 7, 10, 12, 8, 11, 9, 13, 16, 18, 14, 17, 15, 19, 22, 24, 20, 23, 21, 30, 28, 33, 26, 29, 25, 31, 34, 27, 32, 40, 38, 37, 36, 42, 35, 41, 39, 43, 46, 48, 44, 47, 45, 56, 52, 54, 50, 53, 51, 60, 49, 63, 62, 59, 55, 61, 58, 57, 66, 70, 64, 67
Offset: 1
Keywords
Examples
The first terms are: n a(n) gcd(n, a(n)) -- ---- ------------ 1 1 1 2 2 2 3 3 3 4 6 2 5 5 5 6 4 2 7 7 7 8 10 2 9 12 3 10 8 2 11 11 11 12 9 3 13 13 13 14 16 2
Crossrefs
Cf. A238758.
Programs
-
PARI
s=0; for (n=1, 67, for (v=1, oo, if (!bittest(s,v) && (n==1 || isprime(gcd(n,v))), print1 (v", "); s+=2^v; break)))
-
Python
from math import gcd from sympy import isprime from itertools import count, islice def agen(): # generator of terms aset, mink = {1}, 2; yield 1 for n in count(2): k = mink while k in aset or not isprime(gcd(n, k)): k += 1 aset.add(k); yield k while mink in aset: mink += 1 print(list(islice(agen(), 67))) # Michael S. Branicky, May 23 2022
Formula
a(n) = n iff n = 1 or n is a prime number.
Comments