This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354229 #10 May 20 2022 08:50:25 %S A354229 1,0,0,6,-36,210,-630,-5376,153048,-2194296,22190760,-93956544, %T A354229 -2677330656,97821857952,-2019503487456,27899293618944, %U A354229 -98409183995520,-9548919666829440,410311098024923520,-10652005874894469120,176525303194482117120,-46197517147757867520 %N A354229 Expansion of e.g.f. 1/(1 - log(1 + x)^3). %F A354229 a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * Stirling1(k,3) * a(n-k). %F A354229 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling1(n,3*k). %o A354229 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3))) %o A354229 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v; %o A354229 (PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)); %Y A354229 Cf. A006252, A354230. %Y A354229 Cf. A353118, A354134, A354231. %K A354229 sign %O A354229 0,4 %A A354229 _Seiichi Manyama_, May 20 2022