This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354231 #16 Feb 24 2023 11:17:57 %S A354231 1,0,0,6,-36,210,-990,2184,37128,-863736,13020480,-168384744, %T A354231 1940801544,-18825129648,107706637584,1386022834944,-73429347222720, %U A354231 2034345021802560,-46869707752067520,976421492688165120,-18675350766042871680,319467427583225518080 %N A354231 Expansion of e.g.f. exp(log(1 + x)^3). %F A354231 E.g.f.: (1 + x)^(log(1 + x)^2). %F A354231 a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,3) * a(n-k). %F A354231 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling1(n,3*k)/k!. %o A354231 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(log(1+x)^3))) %o A354231 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^log(1+x)^2)) %o A354231 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 3, 1)*v[i-j+1])); v; %o A354231 (PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)/k!); %Y A354231 Cf. A009199, A354232. %Y A354231 Cf. A353344, A354136, A354229. %K A354231 sign %O A354231 0,4 %A A354231 _Seiichi Manyama_, May 20 2022