This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354234 #13 Jan 19 2023 22:36:27 %S A354234 1,2,1,3,1,1,5,3,1,1,7,4,2,1,1,11,7,4,2,1,1,15,10,6,3,2,1,1,22,16,9,6, %T A354234 3,2,1,1,30,22,14,8,5,3,2,1,1,42,32,20,13,8,5,3,2,1,1,56,44,29,18,12, %U A354234 7,5,3,2,1,1,77,62,41,27,17,12,7,5,3,2,1,1 %N A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k. %C A354234 Also partitions of n with at least one part appearing k or more times. It would be interesting to have a bijective proof of this. %H A354234 Andrew Howroyd, <a href="/A354234/b354234.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %e A354234 Triangle begins: %e A354234 1 %e A354234 2 1 %e A354234 3 1 1 %e A354234 5 3 1 1 %e A354234 7 4 2 1 1 %e A354234 11 7 4 2 1 1 %e A354234 15 10 6 3 2 1 1 %e A354234 22 16 9 6 3 2 1 1 %e A354234 30 22 14 8 5 3 2 1 1 %e A354234 42 32 20 13 8 5 3 2 1 1 %e A354234 56 44 29 18 12 7 5 3 2 1 1 %e A354234 77 62 41 27 17 12 7 5 3 2 1 1 %e A354234 For example, row n = 5 counts the following partitions: %e A354234 (5) (32) (32) (41) (5) %e A354234 (32) (41) (311) %e A354234 (41) (221) %e A354234 (221) (2111) %e A354234 (311) %e A354234 (2111) %e A354234 (11111) %e A354234 At least one part appearing k or more times: %e A354234 (5) (221) (2111) (11111) (11111) %e A354234 (32) (311) (11111) %e A354234 (41) (2111) %e A354234 (221) (11111) %e A354234 (311) %e A354234 (2111) %e A354234 (11111) %t A354234 Table[Length[Select[IntegerPartitions[n],MemberQ[#/k,_?IntegerQ]&]],{n,1,15},{k,1,n}] %t A354234 - or - %t A354234 Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]>=k&]],{n,1,15},{k,1,n}] %o A354234 (PARI) \\ here P(k,n) is partitions with no part divisible by k as g.f. %o A354234 P(k,n)={1/prod(i=1, n, 1 - if(i%k, x^i) + O(x*x^n))} %o A354234 M(n,m=n)={my(p=P(n+1,n)); Mat(vector(m, k, Col(p-P(k,n), -n) ))} %o A354234 { my(A=M(12)); for(n=1, #A, print(A[n,1..n])) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A354234 The complement is counted by A061199. %Y A354234 Differences of consecutive terms are A091602. %Y A354234 Column k = 1 is A000041. %Y A354234 Column k = 2 is A047967, ranked by A013929 and A324929. %Y A354234 Column k = 3 is A295341, ranked by A046099 and A354235. %Y A354234 Column k = 4 is A295342. %Y A354234 A000041 counts integer partitions, strict A000009. %Y A354234 A047966 counts uniform partitions. %Y A354234 Cf. A002033, A006918, A064410, A117485, A238394, A238395, A325534. %K A354234 nonn,tabl %O A354234 1,2 %A A354234 _Gus Wiseman_, May 22 2022