cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.

This page as a plain text file.
%I A354234 #13 Jan 19 2023 22:36:27
%S A354234 1,2,1,3,1,1,5,3,1,1,7,4,2,1,1,11,7,4,2,1,1,15,10,6,3,2,1,1,22,16,9,6,
%T A354234 3,2,1,1,30,22,14,8,5,3,2,1,1,42,32,20,13,8,5,3,2,1,1,56,44,29,18,12,
%U A354234 7,5,3,2,1,1,77,62,41,27,17,12,7,5,3,2,1,1
%N A354234 Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.
%C A354234 Also partitions of n with at least one part appearing k or more times. It would be interesting to have a bijective proof of this.
%H A354234 Andrew Howroyd, <a href="/A354234/b354234.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%e A354234 Triangle begins:
%e A354234    1
%e A354234    2  1
%e A354234    3  1  1
%e A354234    5  3  1  1
%e A354234    7  4  2  1  1
%e A354234   11  7  4  2  1  1
%e A354234   15 10  6  3  2  1  1
%e A354234   22 16  9  6  3  2  1  1
%e A354234   30 22 14  8  5  3  2  1  1
%e A354234   42 32 20 13  8  5  3  2  1  1
%e A354234   56 44 29 18 12  7  5  3  2  1  1
%e A354234   77 62 41 27 17 12  7  5  3  2  1  1
%e A354234 For example, row n = 5 counts the following partitions:
%e A354234   (5)      (32)    (32)   (41)  (5)
%e A354234   (32)     (41)    (311)
%e A354234   (41)     (221)
%e A354234   (221)    (2111)
%e A354234   (311)
%e A354234   (2111)
%e A354234   (11111)
%e A354234 At least one part appearing k or more times:
%e A354234   (5)      (221)    (2111)   (11111)  (11111)
%e A354234   (32)     (311)    (11111)
%e A354234   (41)     (2111)
%e A354234   (221)    (11111)
%e A354234   (311)
%e A354234   (2111)
%e A354234   (11111)
%t A354234 Table[Length[Select[IntegerPartitions[n],MemberQ[#/k,_?IntegerQ]&]],{n,1,15},{k,1,n}]
%t A354234 - or -
%t A354234 Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]>=k&]],{n,1,15},{k,1,n}]
%o A354234 (PARI) \\ here P(k,n) is partitions with no part divisible by k as g.f.
%o A354234 P(k,n)={1/prod(i=1, n, 1 - if(i%k, x^i) + O(x*x^n))}
%o A354234 M(n,m=n)={my(p=P(n+1,n)); Mat(vector(m, k, Col(p-P(k,n), -n) ))}
%o A354234 { my(A=M(12)); for(n=1, #A, print(A[n,1..n])) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A354234 The complement is counted by A061199.
%Y A354234 Differences of consecutive terms are A091602.
%Y A354234 Column k = 1 is A000041.
%Y A354234 Column k = 2 is A047967, ranked by A013929 and A324929.
%Y A354234 Column k = 3 is A295341, ranked by A046099 and A354235.
%Y A354234 Column k = 4 is A295342.
%Y A354234 A000041 counts integer partitions, strict A000009.
%Y A354234 A047966 counts uniform partitions.
%Y A354234 Cf. A002033, A006918, A064410, A117485, A238394, A238395, A325534.
%K A354234 nonn,tabl
%O A354234 1,2
%A A354234 _Gus Wiseman_, May 22 2022