This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354235 #10 Sep 05 2022 22:38:23 %S A354235 5,10,13,15,20,23,25,26,30,35,37,39,40,45,46,47,50,52,55,60,61,65,69, %T A354235 70,73,74,75,78,80,85,89,90,91,92,94,95,100,103,104,105,110,111,113, %U A354235 115,117,120,122,125,130,135,137,138,140,141,143,145,146,148,150 %N A354235 Heinz numbers of integer partitions with at least one part divisible by 3. %C A354235 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A354235 The terms together with their prime indices begin: %e A354235 5: {3} %e A354235 10: {1,3} %e A354235 13: {6} %e A354235 15: {2,3} %e A354235 20: {1,1,3} %e A354235 23: {9} %e A354235 25: {3,3} %e A354235 26: {1,6} %e A354235 30: {1,2,3} %e A354235 35: {3,4} %e A354235 37: {12} %e A354235 39: {2,6} %e A354235 40: {1,1,1,3} %e A354235 45: {2,2,3} %e A354235 46: {1,9} %e A354235 47: {15} %e A354235 50: {1,3,3} %e A354235 52: {1,1,6} %e A354235 55: {3,5} %e A354235 60: {1,1,2,3} %t A354235 Select[Range[100],MemberQ[PrimePi/@First/@If[#==1,{},FactorInteger[#]]/3,_?IntegerQ]&] %Y A354235 For 4 instead of 3 we have A046101, counted by A295342. %Y A354235 This sequence ranks the partitions counted by A295341, compositions A335464. %Y A354235 For 2 instead of 3 we have A324929 (and A013929), counted by A047967. %Y A354235 A001222 counts prime factors with multiplicity, distinct A001221. %Y A354235 A004250 counts partitions with some part > 2, compositions A008466. %Y A354235 A004709 lists numbers divisible by no cube, counted by A000726. %Y A354235 A036966 lists 3-full numbers, counted by A100405. %Y A354235 A046099 lists non-cubefree numbers. %Y A354235 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A354235 A124010 gives prime signature, sorted A118914. %Y A354235 A354234 counts partitions of n with at least one part divisible by k. %Y A354235 Cf. A000720, A003963, A008483, A018256, A062739, A064428, A117485, A181819, A339222, A353508. %K A354235 nonn %O A354235 1,1 %A A354235 _Gus Wiseman_, May 23 2022