cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354235 Heinz numbers of integer partitions with at least one part divisible by 3.

This page as a plain text file.
%I A354235 #10 Sep 05 2022 22:38:23
%S A354235 5,10,13,15,20,23,25,26,30,35,37,39,40,45,46,47,50,52,55,60,61,65,69,
%T A354235 70,73,74,75,78,80,85,89,90,91,92,94,95,100,103,104,105,110,111,113,
%U A354235 115,117,120,122,125,130,135,137,138,140,141,143,145,146,148,150
%N A354235 Heinz numbers of integer partitions with at least one part divisible by 3.
%C A354235 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A354235 The terms together with their prime indices begin:
%e A354235     5: {3}
%e A354235    10: {1,3}
%e A354235    13: {6}
%e A354235    15: {2,3}
%e A354235    20: {1,1,3}
%e A354235    23: {9}
%e A354235    25: {3,3}
%e A354235    26: {1,6}
%e A354235    30: {1,2,3}
%e A354235    35: {3,4}
%e A354235    37: {12}
%e A354235    39: {2,6}
%e A354235    40: {1,1,1,3}
%e A354235    45: {2,2,3}
%e A354235    46: {1,9}
%e A354235    47: {15}
%e A354235    50: {1,3,3}
%e A354235    52: {1,1,6}
%e A354235    55: {3,5}
%e A354235    60: {1,1,2,3}
%t A354235 Select[Range[100],MemberQ[PrimePi/@First/@If[#==1,{},FactorInteger[#]]/3,_?IntegerQ]&]
%Y A354235 For 4 instead of 3 we have A046101, counted by A295342.
%Y A354235 This sequence ranks the partitions counted by A295341, compositions A335464.
%Y A354235 For 2 instead of 3 we have A324929 (and A013929), counted by A047967.
%Y A354235 A001222 counts prime factors with multiplicity, distinct A001221.
%Y A354235 A004250 counts partitions with some part > 2, compositions A008466.
%Y A354235 A004709 lists numbers divisible by no cube, counted by A000726.
%Y A354235 A036966 lists 3-full numbers, counted by A100405.
%Y A354235 A046099 lists non-cubefree numbers.
%Y A354235 A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A354235 A124010 gives prime signature, sorted A118914.
%Y A354235 A354234 counts partitions of n with at least one part divisible by k.
%Y A354235 Cf. A000720, A003963, A008483, A018256, A062739, A064428, A117485, A181819, A339222, A353508.
%K A354235 nonn
%O A354235 1,1
%A A354235 _Gus Wiseman_, May 23 2022