A354238 Decimal expansion of 1 - Pi^2/12.
1, 7, 7, 5, 3, 2, 9, 6, 6, 5, 7, 5, 8, 8, 6, 7, 8, 1, 7, 6, 3, 7, 9, 2, 4, 1, 6, 6, 7, 6, 9, 8, 7, 4, 0, 5, 3, 9, 0, 5, 2, 5, 0, 4, 9, 3, 9, 6, 6, 0, 0, 7, 8, 1, 1, 3, 2, 2, 2, 0, 8, 8, 5, 3, 1, 4, 9, 9, 6, 2, 6, 4, 7, 9, 8, 3, 9, 9, 5, 6, 3, 0, 8, 3, 1, 8, 5, 5, 4, 9, 6, 9, 0, 1, 2, 0, 6, 4, 7, 3, 4, 7, 9, 9, 7
Offset: 0
Examples
0.177532966575886781763792416676987405390525049396600781132220885314996264798...
References
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013.
Links
- Ovidiu Furdui, Problem A, Nieuw Archief voor Wiskunde, Vol. 9, No. 1 (2008), p. 86; "Problem 2008/1-A, Solution to Problem A by Noud Aldenhoven and Daan Wanrooy, ibid., Vol. 9, No. 3 (2008), p. 303.
- Ovidiu Furdui, Problem 1930, Mathematics Magazine, Vol. 86, No. 4 (2013), p. 289; A zeta series, Solution to Problem 1930 by Omran Kouba, ibid., Vol. 87, No. 4 (2014), pp. 296-298.
- Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (C7.4).
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[1 - Pi^2/12, 10, 100][[1]] (* Amiram Eldar, May 20 2022 *)
-
PARI
1-Pi^2/12
-
PARI
1-zeta(2)/2
Formula
Equals lim_{n->infinity} A004125(n)/(n^2).
Equals 1 - A013661/2.
Equals 1 - A072691.
Equals A152416/2.
Equals Sum_{k>=1} 1/(2*k*(k+1)^2). - Amiram Eldar, May 20 2022
Equals -1/4 + Sum_{k>=2} (-1)^k * k * (k - Sum_{i=2..k} zeta(i)) (Furdui, 2013 problem). - Amiram Eldar, Jun 09 2022
Equals Integral_{x>=1} {x}/x^3 dx where {.} is the fractional part. [Nahin]. R. J. Mathar, May 22 2024
From Amiram Eldar, Jul 31 2025: (Start)
Equals Integral_{x=0..1} {1/x} * x dx (Furdui, 2013 book, section 2.21, page 103).
Equals Integral_{x=0..1} Integral_{y=0..1} {x/y}*{y/x} dx dy, where {} denotes fractional part (Furdui, 2008 and 2013 book, section 2.36, page 105). (End)
Comments