This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354241 #19 Sep 10 2023 08:39:29 %S A354241 1,2,14,160,2544,51888,1292208,38012448,1289847456,49593778368, %T A354241 2130914229312,101188640375040,5262325852773120,297450338175682560, %U A354241 18157597034693207040,1190483599149657584640,83433723762978141189120,6224485980052510972692480 %N A354241 Expansion of e.g.f. 1/sqrt(1 + 4 * log(1-x)). %F A354241 E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-log(1-x))^k. %F A354241 a(n) = Sum_{k=0..n} (2*k)! * |Stirling1(n,k)|/k!. %F A354241 a(n) ~ n^n / (sqrt(2) * (exp(1/4)-1)^(n + 1/2) * exp(3*n/4)). - _Vaclav Kotesovec_, Jun 04 2022 %F A354241 a(0) = 1; a(n) = Sum_{k=1..n} (4 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023 %o A354241 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+4*log(1-x)))) %o A354241 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-log(1-x))^k))) %o A354241 (PARI) a(n) = sum(k=0, n, (2*k)!*abs(stirling(n, k, 1))/k!); %Y A354241 Cf. A354240, A354242, A354244. %K A354241 nonn %O A354241 0,2 %A A354241 _Seiichi Manyama_, May 20 2022