cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354252 Expansion of e.g.f. 1/sqrt(7 - 6 * exp(x)).

This page as a plain text file.
%I A354252 #23 Nov 17 2023 11:20:34
%S A354252 1,3,30,489,11127,325218,11612595,489926559,23846152332,1315294430043,
%T A354252 81078316924035,5523729981650004,412148874577007037,
%U A354252 33425421047034028743,2927620572178735480350,275410244285003264624949,27695140477706524122414867
%N A354252 Expansion of e.g.f. 1/sqrt(7 - 6 * exp(x)).
%H A354252 Seiichi Manyama, <a href="/A354252/b354252.txt">Table of n, a(n) for n = 0..343</a>
%F A354252 E.g.f.: Sum_{k>=0} binomial(2*k,k) * (3 * (exp(x) - 1)/2)^k.
%F A354252 a(n) = Sum_{k=0..n} (3/2)^k * (2*k)! * Stirling2(n,k)/k!.
%F A354252 a(n) ~ sqrt(2/7) * n^n / (exp(n) * log(7/6)^(n + 1/2)). - _Vaclav Kotesovec_, Jun 04 2022
%F A354252 a(0) = 1; a(n) = Sum_{k=1..n} (6 - 3*k/n) * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023
%F A354252 a(0) = 1; a(n) = 3*a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 17 2023
%o A354252 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(7-6*exp(x))))
%o A354252 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(3*(exp(x)-1)/2)^k)))
%o A354252 (PARI) a(n) = sum(k=0, n, (3/2)^k*(2*k)!*stirling(n, k, 2)/k!);
%Y A354252 Cf. A305404, A354242, A354253.
%Y A354252 Cf. A094419, A346985, A354252, A365556, A365557.
%Y A354252 Cf. A011781.
%K A354252 nonn
%O A354252 0,2
%A A354252 _Seiichi Manyama_, May 21 2022