cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354256 Squares that remain square when written backward, are not divisible by 10, and have an even number of digits.

This page as a plain text file.
%I A354256 #20 Jul 28 2024 11:45:40
%S A354256 1089,9801,698896,10036224,42263001,637832238736,1021178969603881,
%T A354256 1883069698711201,4099923883299904,6916103777337773016196
%N A354256 Squares that remain square when written backward, are not divisible by 10, and have an even number of digits.
%C A354256 a(10) > 10^21.
%C A354256 Is this sequence infinite?
%C A354256 Every term is a multiple of 121.
%C A354256 Terms come in nonpalindromic pairs and palindromic singles; see Example section.
%C A354256 Removal of the "even number of digits" requirement yields A033294, which has 8560 terms < 10^20.
%C A354256 A027829 is a subsequence. - _Chai Wah Wu_, May 23 2022
%H A354256 <a href="/index/Sq#sqrev">Index entry for sequences related to reversing digits of squares</a>
%e A354256 There are no 2-digit terms.
%e A354256 The smallest 4-digit multiple of 121 is 1089 = 33^2, which happens to be a(1); its digit reversal is a(2) = 9801 = 99^2.
%e A354256 The only 6-digit term is the palindrome a(3) = 698896 = 836^2.
%e A354256 The only 8-digit terms are a(4) = 10036224 = 3168^2 and its digit reversal a(5) = 42263001 = 6501^2.
%e A354256 There are no 10-digit terms.
%e A354256 The only 12-digit term is the palindrome a(6) = 637832238736 = 798644^2.
%e A354256 There are no 14-digit terms.
%e A354256 There are three 16-digit terms: a(7) = 1021178969603881 = 31955891^2, its digit reversal a(8) = 1883069698711201 = 43394351^2, and the palindrome a(9) = 4099923883299904 = 64030648^2.
%t A354256 Select[Range[500000]^2,EvenQ[IntegerLength[#]]&&Mod[#,10]!=0&&IntegerQ[Sqrt[ IntegerReverse[ #]]]&] (* The program generates the first five terms of the sequence. *) (* _Harvey P. Dale_, Jul 28 2024 *)
%o A354256 (Python)
%o A354256 from math import isqrt
%o A354256 from itertools import count, islice
%o A354256 def sqr(n): return isqrt(n)**2 == n
%o A354256 def agen(): yield from (k*k for k in count(1) if k%10 and len(s:=str(k*k))%2==0 and sqr(int(s[::-1])))
%o A354256 print(list(islice(agen(), 6))) # _Michael S. Branicky_, May 23 2022
%o A354256 (Python)
%o A354256 from math import isqrt
%o A354256 from itertools import count, islice
%o A354256 from sympy import integer_nthroot
%o A354256 def A354256_gen(): # generator of terms
%o A354256     for l in count(2,2):
%o A354256         for m in (1,4,5,6,9):
%o A354256             for k in range(1+isqrt(m*10**(l-1)-1),1+isqrt((m+1)*10**(l-1)-1)):
%o A354256                 if k % 10 and integer_nthroot(int(str(k*k)[::-1]),2)[1]:
%o A354256                     yield k*k
%o A354256 A354256_list = list(islice(A354256_gen(),9)) # _Chai Wah Wu_, May 23 2022
%Y A354256 Cf. A027829, A033294.
%K A354256 nonn,base,more
%O A354256 1,1
%A A354256 _Jon E. Schoenfield_, May 21 2022
%E A354256 a(10) from _Chai Wah Wu_, May 24 2022