This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354259 #13 Oct 06 2023 16:44:50 %S A354259 1,3,24,330,6354,157482,4772268,170950392,7066790676,331108863372, %T A354259 17340063707952,1003726452207960,63635982830437320, %U A354259 4385439331442232840,326404115258791793040,26093904013675118381760,2229931839713559043435920 %N A354259 Expansion of e.g.f. 1/sqrt(1 - 6 * log(1+x)). %F A354259 E.g.f.: Sum_{k>=0} binomial(2*k,k) * (3 * log(1+x)/2)^k. %F A354259 a(n) = Sum_{k=0..n} (3/2)^k * (2*k)! * Stirling1(n,k)/k!. %F A354259 a(n) ~ n^n / (sqrt(3) * (exp(1/6)-1)^(n + 1/2) * exp(n - 1/12)). - _Vaclav Kotesovec_, Jun 04 2022 %t A354259 With[{nn=20},CoefficientList[Series[1/Sqrt[1-6Log[1+x]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Oct 06 2023 *) %o A354259 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-6*log(1+x)))) %o A354259 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(3*log(1+x)/2)^k))) %o A354259 (PARI) a(n) = sum(k=0, n, (3/2)^k*(2*k)!*stirling(n, k, 1)/k!); %Y A354259 Cf. A320343, A354240, A354260. %Y A354259 Cf. A354252, A354261. %K A354259 nonn %O A354259 0,2 %A A354259 _Seiichi Manyama_, May 21 2022