cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354261 Expansion of e.g.f. 1/sqrt(1 + 6 * log(1-x)).

This page as a plain text file.
%I A354261 #10 Jun 04 2022 04:22:49
%S A354261 1,3,30,492,11250,330282,11844288,501822108,24527880756,1358556883308,
%T A354261 84094256900232,5753027212816320,431039748845205000,
%U A354261 35102411472973316040,3087236653107610062240,291627772873980244894800,29447260745861893561906320
%N A354261 Expansion of e.g.f. 1/sqrt(1 + 6 * log(1-x)).
%F A354261 E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-3 * log(1-x)/2)^k.
%F A354261 a(n) = Sum_{k=0..n} (3/2)^k * (2*k)! * |Stirling1(n,k)|/k!.
%F A354261 a(n) ~ n^n / (sqrt(3) * (exp(1/6)-1)^(n + 1/2) * exp(5*n/6)). - _Vaclav Kotesovec_, Jun 04 2022
%o A354261 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+6*log(1-x))))
%o A354261 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-3*log(1-x)/2)^k)))
%o A354261 (PARI) a(n) = sum(k=0, n, (3/2)^k*(2*k)!*abs(stirling(n, k, 1))/k!);
%Y A354261 Cf. A346978, A354241, A354262.
%Y A354261 Cf. A354252, A354259.
%K A354261 nonn
%O A354261 0,2
%A A354261 _Seiichi Manyama_, May 21 2022