cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354262 Expansion of e.g.f. 1/sqrt(1 + 8 * log(1-x)).

This page as a plain text file.
%I A354262 #12 Dec 14 2024 12:29:36
%S A354262 1,4,52,1112,33192,1272576,59607552,3298935552,210638509824,
%T A354262 15241340093952,1232504690492928,110154484622208000,
%U A354262 10782300230031713280,1147157496053856645120,131810751499551281786880,16266976762439018716323840,2145960434809665656603320320
%N A354262 Expansion of e.g.f. 1/sqrt(1 + 8 * log(1-x)).
%F A354262 E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-2 * log(1-x))^k.
%F A354262 a(n) = Sum_{k=0..n} 2^k * (2*k)! * |Stirling1(n,k)|/k!.
%F A354262 a(n) ~ n^n / (2 * (exp(1/8)-1)^(n + 1/2) * exp(7*n/8)). - _Vaclav Kotesovec_, Jun 04 2022
%t A354262 With[{nn=20},CoefficientList[Series[1/Sqrt[1+8*Log[1-x]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Dec 14 2024 *)
%o A354262 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+8*log(1-x))))
%o A354262 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-2*log(1-x))^k)))
%o A354262 (PARI) a(n) = sum(k=0, n, 2^k*(2*k)!*abs(stirling(n, k, 1))/k!);
%Y A354262 Cf. A346978, A354241, A354261.
%Y A354262 Cf. A354253, A354260.
%K A354262 nonn
%O A354262 0,2
%A A354262 _Seiichi Manyama_, May 21 2022