This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354264 #20 Mar 15 2023 15:02:44 %S A354264 1,4,36,488,8824,199456,5410208,171209664,6192052800,251937937920, %T A354264 11389639660032,566394573855744,30726758349800448,1805828538127687680, %U A354264 114293350061315678208,7750480651439579529216,560615413313367534698496,43085423893717998388740096 %N A354264 Expansion of e.g.f. 1/(1 + 4 * log(1-x)). %F A354264 E.g.f.: 1/(1 + 4 * log(1-x)). %F A354264 a(0) = 1; a(n) = 4 * Sum_{k=1..n} (k-1)! * binomial(n,k) * a(n-k). %F A354264 a(n) = Sum_{k=0..n} 4^k * k! * |Stirling1(n, k)|. %F A354264 a(n) ~ n! * exp(n/4) / (4 * (exp(1/4) - 1)^(n+1)). - _Vaclav Kotesovec_, Jun 04 2022 %o A354264 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+4*log(1-x)))) %o A354264 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v; %o A354264 (PARI) a(n) = sum(k=0, n, 4^k*k!*abs(stirling(n, k, 1))); %Y A354264 Column k=4 of A320079. %Y A354264 Cf. A094417, A354147, A354241. %K A354264 nonn %O A354264 0,2 %A A354264 _Seiichi Manyama_, May 21 2022