This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354265 #11 Nov 22 2022 09:40:39 %S A354265 2,3,1,4,4,3,5,7,7,4,6,10,11,11,7,7,13,15,18,18,11,8,16,19,25,29,29, %T A354265 18,9,19,23,32,40,47,47,29,10,22,27,39,51,65,76,76,47,11,25,31,46,62, %U A354265 83,105,123,123,76,12,28,35,53,73,101,134,170,199,199,123 %N A354265 Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2. %C A354265 The definition declares the Lucas numbers for all integers n and k. It gives the classical Lucas numbers as L(0, n) = Lucas(n), where Lucas(n) = A000032(n) is extended in the usual way for negative n. %H A354265 Peter Luschny, <a href="https://www.luschny.de/math/seq/oeis/FibonacciFunction.html">The Fibonacci Function</a>. %F A354265 Functional equation extends Cassini's theorem: %F A354265 L(n, k) = (-1)^k*L(1 - n, -k - 2). %F A354265 L(n, k) = n*Lucas(k + 1) + Lucas(k). %F A354265 L(n, k) = L(n, k-1) + L(n, k-2). %F A354265 L(n, k) = i^k*sec(c)*(n*cos(c*(k + 1)) - i*cos(c*k)), where c = Pi/2 + i*arccsch(2), for all n, k in Z. %F A354265 Using the generalized Fibonacci numbers F(n, k) = A352744(n, k), %F A354265 L(n, k) = F(n, k+1) + F(n, k) + F(n, k-1) + F(n, k-2). %e A354265 Array starts: %e A354265 [0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032 %e A354265 [1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted) %e A354265 [2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted) %e A354265 [3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088 %e A354265 [4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388 %e A354265 [5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995 %e A354265 [6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420 %e A354265 [7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609 %e A354265 [8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ... %e A354265 [9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ... %p A354265 phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2: %p A354265 L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi): %p A354265 seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10); %t A354265 L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]}, %t A354265 I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ]; %t A354265 Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm %t A354265 (* Alternative: *) %t A354265 L[n_, k_] := n*LucasL[k + 1] + LucasL[k]; %t A354265 Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm %o A354265 (Julia) %o A354265 const FibMem = Dict{Int,Tuple{BigInt,BigInt}}() %o A354265 function FibRec(n::Int) %o A354265 get!(FibMem, n) do %o A354265 n == 0 && return (BigInt(0), BigInt(1)) %o A354265 a, b = FibRec(div(n, 2)) %o A354265 c = a * (b * 2 - a) %o A354265 d = a * a + b * b %o A354265 iseven(n) ? (c, d) : (d, c + d) %o A354265 end %o A354265 end %o A354265 function Lucas(n, k) %o A354265 k == 0 && return BigInt(n + 2) %o A354265 k == -1 && return BigInt(2 * n - 1) %o A354265 k < 0 && return (-1)^k * Lucas(1 - n, -k - 2) %o A354265 a, b = FibRec(k) %o A354265 c, d = FibRec(k - 1) %o A354265 n * (2 * a + b) + 2 * c + d %o A354265 end %o A354265 for n in -6:6 %o A354265 println([Lucas(n, k) for k in -6:6]) %o A354265 end %Y A354265 Cf. A000032, A000204, A022088, A022388, A190995, A206420, A206609. %Y A354265 Cf. A352744. %K A354265 nonn,tabl %O A354265 0,1 %A A354265 _Peter Luschny_, May 29 2022