cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354269 Numbers b such that b^(11-1) == 1 (mod 11^2) and b^(1006003-1) == 1 (mod 1006003^2), i.e., common Wieferich bases of 11 and 1006003.

This page as a plain text file.
%I A354269 #23 May 30 2022 01:47:42
%S A354269 1,3,9,27,81,243,729,2187,6561,19683,59049,177147,531441,1594323,
%T A354269 4782969,14348907,31098449,34970654,35236643,43046721,58883189,
%U A354269 73220005,93295347,102199060,104911962,105709929,112028791,112870007,115196746,117560414,129140163,144185176
%N A354269 Numbers b such that b^(11-1) == 1 (mod 11^2) and b^(1006003-1) == 1 (mod 1006003^2), i.e., common Wieferich bases of 11 and 1006003.
%C A354269 A000244 is a subsequence.
%o A354269 (PARI) is(n) = my(p=11, q=1006003); Mod(n, p^2)^(p-1)==1 && Mod(n, q^2)^(q-1)==1
%o A354269 (Python)
%o A354269 def ok(b): return pow(b, 10, 121)==1 and pow(b, 1006002, 1006003**2)==1
%o A354269 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, May 25 2022
%Y A354269 Cf. A000244, A014127, A247208.
%K A354269 nonn
%O A354269 1,2
%A A354269 _Felix Fröhlich_, May 25 2022