A354272 Irregular triangle read by rows: coefficients of polynomials which are the product of all possible monic Littlewood polynomials of degree n.
1, -1, 0, 1, 1, 0, -2, 0, -1, 0, -2, 0, 1, 1, 0, -4, 0, 2, 0, -4, 0, 15, 0, 8, 0, -36, 0, 8, 0, 15, 0, -4, 0, 2, 0, -4, 0, 1, 1, 0, -8, 0, 20, 0, -24, 0, 58, 0, -80, 0, -92, 0, 120, 0, 147, 0, 384, 0, -2108, 0, 880, 0, 3940, 0, -3096, 0, 2288, 0, -2136, 0, -1803, 0, -2136, 0, 2288, 0, -3096, 0, 3940, 0, 880, 0, -2108, 0, 384, 0, 147, 0, 120, 0, -92, 0, -80, 0, 58, 0, -24, 0, 20, 0, -8, 0, 1
Offset: 0
Examples
The triangle T(n, k) begins n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0: 1 1: -1 0 1 2: 1 0 -2 0 -1 0 -2 0 1 3: 1 0 -4 0 2 0 -4 0 15 0 8 0 -36 0 8 0 15 0 -4 0 2 0 -4 0 1 ... E.g., row 2: {1,0,-2,0,-1,0,-2,0,1} corresponds to polynomial 1-2x^2-x^4-2x^6+x^8. Number of terms in each row equals A002064(n).
Links
- Wikipedia, Littlewood polynomial
Programs
-
PARI
row(n) = { Vecrev(Vec(prod (k=2^n, 2^(n+1)-1, Pol(apply(d -> if (d, 1, -1), binary(k)))))) } \\ Rémy Sigrist, Jul 21 2022
-
Python
from itertools import product def mult_pol(s1, s2): res = [0]*(len(s1)+len(s2)-1) for o1,i1 in enumerate(s1): for o2,i2 in enumerate(s2): res[o1+o2] += i1*i2 return res out = [] for d in range(0, 5): startp = [1,] for i in product((1,-1),repeat = d): startp = mult_pol(startp, list(i)+[1,]) out.extend(startp) print(out)