cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354277 Product_{n>=1} 1 / (1 - x^n/n!)^a(n) = exp(-x) / (1 - x).

This page as a plain text file.
%I A354277 #7 May 23 2022 05:38:45
%S A354277 0,1,2,3,24,70,720,4305,39200,337176,3628800,38417610,479001600,
%T A354277 6128488080,87104969952,1297383162075,20922789888000,354250929192160,
%U A354277 6402373705728000,121407227453840328,2432849766865689600,51041047393559059200,1124000727777607680000
%N A354277 Product_{n>=1} 1 / (1 - x^n/n!)^a(n) = exp(-x) / (1 - x).
%F A354277 a(1) = 0; a(n) = (n-1)! * (1 - Sum_{d|n, 1 < d < n} d * d!^(-n/d) * a(d)).
%t A354277 a[1] = 0; a[n_] := a[n] = (n - 1)! (1 - Sum[d d!^(-n/d) a[d], {d, Divisors[n]~Complement~{1, n}}]); Table[a[n], {n, 1, 23}]
%Y A354277 Cf. A000166, A006973, A137852, A353822, A354278.
%K A354277 nonn
%O A354277 1,3
%A A354277 _Ilya Gutkovskiy_, May 22 2022