cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354280 a(n) is the numerator of Cesàro means sequence c(n) of A237420 when the denominator is A141310(n).

This page as a plain text file.
%I A354280 #53 Sep 18 2023 14:05:07
%S A354280 0,0,2,1,6,2,12,3,20,4,30,5,42,6,56,7,72,8,90,9,110,10,132,11,156,12,
%T A354280 182,13,210,14,240,15,272,16,306,17,342,18,380,19,420,20,462,21,506,
%U A354280 22,552,23,600,24,650,25,702,26,756,27,812,28,870,29,930,30,992,31,1056,32,1122,33,1190
%N A354280 a(n) is the numerator of Cesàro means sequence c(n) of A237420 when the denominator is A141310(n).
%C A354280 So, we get c(n) = a(n) / A141310(n) for n >= 0 (see Formula and Example section).
%C A354280 Cesàro mean theorem: when the series u(n) has a limit (finite or infinite) in the usual sense, then c(n) = (u(0)+...+u(n))/(n+1) has the same Cesàro limit, but the converse is false.
%C A354280 A237420 is such a counterexample in the case of an infinite limit.
%C A354280 Proof: A237420 is not convergent in the usual sense because a(2n+1) = 0, while a(2n) -> oo when n -> oo. Now, the successive arithmetic means c(n) of the first n terms of the sequence are 0/1, 0/2, 2/3, 2/4, 6/5, 6/6, 12/7, 12/8, 20/9, 20/10, ... so c(2n)= (n*(n+1))/(2*n+1) ~ n/2 and c(2n+1) = n/2, hence the Cesàro limit is infinity because c(n) -> oo as n -> oo (Arnaudiès et al.), QED.
%C A354280 The first few irreducible fractions c(n) are in the last row of the Example section. The differences between row 4 and last row exist only when n = 4*k+1, k>0, then respectively c(n) = 2k/2 = k/1.
%C A354280 This sequence consists of the oblong numbers (A002378) interlaced with the natural numbers (A001477)
%C A354280 Note that A033999 is a counterexample in the case of a finite Cesàro limit.
%C A354280 Also, the converse of the Cesàro mean theorem is true iff u(n) is monotonic.
%D A354280 J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
%H A354280 ProofWiki, <a href="https://proofwiki.org/wiki/Cesàro_Mean">Cesàro mean</a>.
%H A354280 The MacTutor History of Mathematics archive, <a href="https://mathshistory.st-andrews.ac.uk/Biographies/Cesaro/">Ernesto Cesàro</a>.
%H A354280 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ernesto_Cesàro">Ernesto Cesàro</a>.
%H A354280 Wikipédia, <a href="https://fr.wikipedia.org/wiki/Lemme_de_Cesàro">Lemme de Cesàro </a> (in French).
%H A354280 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).
%F A354280 a(n) = (A141310(n)/(n+1)) * Sum_{k=0..n} A237420(k).
%F A354280 For n >= 0, a(2n) = n*(n+1) = A002378(n), a(2n+1) = n = A001477(n).
%F A354280 G.f.: x^2*(2 + x - x^3)/(1 - x^2)^3. - _Stefano Spezia_, May 23 2022
%e A354280 Table with the first few terms:
%e A354280        Indices n         :   0,   1,   2,   3,   4,   5,    6,   7,    8,   9, ...
%e A354280        A237420(n)        :   0,   0,   2,   0,   4,   0,    6,   0,    8,   0, ...
%e A354280       Partial sums       :   0,   0,   2,   2,   6,   6,   12,  12,   20,  20, ...
%e A354280     Cesàro means c(n)    : 0/1, 0/2, 2/3, 1/2, 6/5, 2/2, 12/7, 3/2, 20/9, 4/2, ...
%e A354280       Numerator a(n)     :   0,   0,   2,   1,   6,   2,   12,   3,   20,   4, ...
%e A354280 Denominator A141310(n)   :   1,   2,   3,   2,   5,   2,    7,   2,    9,   2, ...
%e A354280 Irreducible Cesàro mean  : 0/1, 0/2, 2/3, 1/2, 6/5, 1/1, 12/7, 3/2, 20/9, 2/1, ...
%t A354280 m = 50; Accumulate[Table[If[OddQ[n], 0, n], {n, 0, 2*m - 1}]] * Flatten[Table[{2*n - 1, 2}, {n, 1, m}]] / Range[2*m] (* _Amiram Eldar_, Jun 05 2022 *)
%o A354280 (PARI) c(n) = sum(k=0, n, if (k%2, 0, k))/(n+1);
%o A354280 f(n) = if(n%2, 2, 1+n); \\ A141310
%o A354280 a(n) = c(n)*f(n); \\ _Michel Marcus_, Jun 06 2022
%Y A354280 Cf. A001477, A002378, A033999, A141310 (denominators), A237420.
%K A354280 nonn,easy
%O A354280 0,3
%A A354280 _Bernard Schott_, May 22 2022