A354282 Weird numbers k such that k+1 is the sum of a subset of the aliquot divisors of k.
70, 836, 4030, 5830, 7192, 7912, 10792, 17272, 45356, 83312, 91388, 113072, 222952, 243892, 254012, 388076, 410476, 786208, 1713592, 4145216, 4199030, 4632896, 6911512, 7257530, 7354304, 7607530, 9928792, 10402490, 10580624, 11339816, 11547352, 12052390, 13086016
Offset: 1
Keywords
Examples
70 is a term since it is a weird number, its aliquot divisors are {1, 2, 5, 7, 10, 14, 35} and 71 = 5 + 7 + 10 + 14 + 35.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..94
Programs
-
Mathematica
q[n_] := Module[{d = Most @ Divisors[n], x, s, c}, If[Plus @@ d <= n, False, s = Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n + 1}]; c = SeriesCoefficient[s, #] & /@ (n + {0, 1}); c[[1]] == 0 && c[[2]] > 0]]; Select[Range[10000], q]
-
PARI
is(n, d=divisors(n)[^-1], s=vecsum(d))={s>n && !is_A005835(n, d, s) && is_A005835(n+1, d, s)}; \\ using is_A005835() by M. F. Hasler at A005835
Comments