cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354283 Weird numbers k such that k-1 and k+1 are both sums of subsets of the aliquot divisors of k.

Original entry on oeis.org

70, 4030, 5830, 17272, 243892, 4199030, 11339816, 11547352, 13885970, 24450010, 31699430, 32284330, 34041370, 34169630, 42251930, 50761810, 67727110, 67820390, 85389368, 89283592, 141659096, 146764264, 162079768, 173482552, 259858324, 410832532, 411643576, 486224072
Offset: 1

Views

Author

Amiram Eldar, May 22 2022

Keywords

Comments

There are 17270452 weird numbers below 10^10 and only 42 are in this sequence.

Examples

			70 is a term since it is a weird number, its aliquot divisors are {1, 2, 5, 7, 10, 14, 35}, 69 = 1 + 2 + 7 + 10 + 14 + 35, and 71 = 5 + 7 + 10 + 14 + 35.
		

Crossrefs

Intersection of A354281 and A354282.
Subsequence of A006037.
Cf. A005835.

Programs

  • Mathematica
    q[n_] := Module[{d = Most @ Divisors[n], x, s, c}, If[Plus @@ d <= n, False, s = Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n + 1}]; c = SeriesCoefficient[s, #] & /@ (n + {-1, 0, 1}); c[[1]] > 0 && c[[2]] == 0 && c[[3]] > 0]]; Select[Range[10000], q]
  • PARI
    is(n, d=divisors(n)[^-1], s=vecsum(d))={s>n && !is_A005835(n, d, s) && is_A005835(n-1, d, s) && is_A005835(n+1, d, s)}; \\ using is_A005835() by M. F. Hasler at A005835