A354283 Weird numbers k such that k-1 and k+1 are both sums of subsets of the aliquot divisors of k.
70, 4030, 5830, 17272, 243892, 4199030, 11339816, 11547352, 13885970, 24450010, 31699430, 32284330, 34041370, 34169630, 42251930, 50761810, 67727110, 67820390, 85389368, 89283592, 141659096, 146764264, 162079768, 173482552, 259858324, 410832532, 411643576, 486224072
Offset: 1
Keywords
Examples
70 is a term since it is a weird number, its aliquot divisors are {1, 2, 5, 7, 10, 14, 35}, 69 = 1 + 2 + 7 + 10 + 14 + 35, and 71 = 5 + 7 + 10 + 14 + 35.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..42
Programs
-
Mathematica
q[n_] := Module[{d = Most @ Divisors[n], x, s, c}, If[Plus @@ d <= n, False, s = Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n + 1}]; c = SeriesCoefficient[s, #] & /@ (n + {-1, 0, 1}); c[[1]] > 0 && c[[2]] == 0 && c[[3]] > 0]]; Select[Range[10000], q]
-
PARI
is(n, d=divisors(n)[^-1], s=vecsum(d))={s>n && !is_A005835(n, d, s) && is_A005835(n-1, d, s) && is_A005835(n+1, d, s)}; \\ using is_A005835() by M. F. Hasler at A005835
Comments