This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354285 #49 May 30 2022 19:35:40 %S A354285 4,157,177,1381,1437,7417,9661,9901,12757,15297,15681,16921,35961, %T A354285 36901,39777,75741,77277,93097,94441,103317,108201,111261,117541, %U A354285 121377,127597,128461,128901,130197,134677,146841,147417,151377,156601,160077,165441,166861,169177,178537,185901,187881,306541 %N A354285 Numbers k such that one of k, k+1, k+2 is prime and the other two are semiprimes, and one of R(n), R(n+1), R(n+2) is prime and the other two are semiprimes, where R = A004086. %C A354285 All terms after the first == 1 (mod 4). %H A354285 Robert Israel, <a href="/A354285/b354285.txt">Table of n, a(n) for n = 1..10000</a> %e A354285 a(3) = 177 is a term because 177 = 3*59 and 178 = 2*89 are semiprimes, 179 is prime, 771 = 3*257 and 871 = 13*67 are semiprimes and 971 is prime. %p A354285 revdigs:= proc(n) local i,L; %p A354285 L:= convert(n,base,10); %p A354285 add(10^(i-1)*L[-i],i=1..nops(L)) %p A354285 end proc: %p A354285 f:= proc(n) uses numtheory; %p A354285 if not isprime((n+1)/2) then return false fi; %p A354285 if n mod 3 = 0 then if not(isprime(n/3) and isprime(n+2)) then return false fi %p A354285 elif n mod 3 = 2 then return false %p A354285 elif not(isprime(n) and isprime((n+2)/3)) then return false %p A354285 fi; %p A354285 sort(map(bigomega@revdigs,[n,n+1,n+2]))=[1,2,2] %p A354285 end proc: %p A354285 f(4):= true: %p A354285 select(f, [4, seq(i,i=5..10^6,4)]); %t A354285 Select[Range[300000], Sort[PrimeOmega[# + {0, 1, 2}]] == Sort[PrimeOmega[IntegerReverse[# + {0, 1, 2}]]] == {1, 2, 2} &] (* _Amiram Eldar_, May 29 2022 *) %Y A354285 Cf. A004086. %K A354285 nonn,base %O A354285 1,1 %A A354285 _J. M. Bergot_ and _Robert Israel_, May 29 2022