cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354286 Expansion of e.g.f. 1/(1 - x)^(2/(1 + 2 * log(1-x))).

This page as a plain text file.
%I A354286 #15 May 23 2022 09:14:29
%S A354286 1,2,14,144,1936,32000,625952,14117152,360175584,10246079616,
%T A354286 321313928448,11006050602624,408662128569984,16344011453662464,
%U A354286 700254206319007488,31990601456727585792,1551985176120589820928,79669906174753878177792
%N A354286 Expansion of e.g.f. 1/(1 - x)^(2/(1 + 2 * log(1-x))).
%F A354286 a(0) = 1; a(n) = Sum_{k=1..n} A088500(k) * binomial(n-1,k-1) * a(n-k).
%F A354286 a(n) = Sum_{k=0..n} 2^k * A000262(k) * |Stirling1(n,k)|.
%F A354286 a(n) ~ n^(n - 1/4) / (2^(3/4) * (exp(1/2) - 1)^(n + 1/4) * exp(3/4 - 1/(4*(exp(1/2) - 1)) - sqrt(2*n/(exp(1/2) - 1)) + n/2)). - _Vaclav Kotesovec_, May 23 2022
%o A354286 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(2/(1+2*log(1-x)))))
%o A354286 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A354286 Cf. A088815, A354287.
%Y A354286 Cf. A000262, A088500, A354288, A354290.
%K A354286 nonn
%O A354286 0,2
%A A354286 _Seiichi Manyama_, May 23 2022