This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354287 #15 May 23 2022 09:24:22 %S A354287 1,3,30,438,8334,194580,5368662,170591022,6126386724,245127214548, %T A354287 10804866210648,519910458588576,27105081897342816,1521393008601586536, %U A354287 91445577404393807928,5858664681621903625368,398467273528657973600208,28668189882264862351707504 %N A354287 Expansion of e.g.f. 1/(1 - x)^(3/(1 + 3 * log(1-x))). %F A354287 a(0) = 1; a(n) = Sum_{k=1..n} A354263(k) * binomial(n-1,k-1) * a(n-k). %F A354287 a(n) = Sum_{k=0..n} 3^k * A000262(k) * |Stirling1(n,k)|. %F A354287 a(n) ~ exp((-5 + 1/(exp(1/3) - 1) + 4*sqrt(3*n/(exp(1/3) - 1)) - 4*n)/6) * n^(n - 1/4) / (sqrt(2) * 3^(1/4) * (exp(1/3) - 1)^(n + 1/4)). - _Vaclav Kotesovec_, May 23 2022 %o A354287 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(3/(1+3*log(1-x))))) %o A354287 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v; %Y A354287 Cf. A088815, A354286. %Y A354287 Cf. A000262, A354263, A354289, A354291. %K A354287 nonn %O A354287 0,2 %A A354287 _Seiichi Manyama_, May 23 2022