This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354296 #11 Feb 16 2025 08:34:03 %S A354296 9,7,2,7,1,3,5,8,6,9,3,6,2,4,2,3,7,1,5,1,3,0,5,5,0,2,4,3,3,4,5,3,8,0, %T A354296 8,2,8,4,9,5,4,7,5,8,8,6,1,9,1,0,1,3,1,8,6,8,3,9,9,3,4,7,2,8,0,2,5,9, %U A354296 4,7,5,7,5,2,9,6,7,4,1,1,4,1,5,6,8,7,3,6,4,6,6,6,1,9,4,3,1,2,5,5,1,0,2,8,7,1 %N A354296 Decimal expansion of Product_{k>=1} (1 - exp(-2*k*Pi/sqrt(3))). %C A354296 Note that Prudnikov incorrectly give this product as 3^(1/4)*exp(-Pi*sqrt(3)/18), which differs from the correct result by 0.0000182... %D A354296 A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 757, section 6.2.3, incorrect formula 4. %H A354296 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>, formula 52. %e A354296 0.972713586936242371513055024334538082849547588619101318683993472802594... %p A354296 evalf(Product(1 - exp(-2*k*Pi/sqrt(3)), k = 1..infinity), 105); %t A354296 RealDigits[QPochhammer[E^(-2*Pi/Sqrt[3])], 10, 105][[1]] %o A354296 (PARI) prodinf(k=1, (1 - exp(-2*k*Pi/sqrt(3)))) %Y A354296 Cf. A292828. %K A354296 nonn,cons %O A354296 0,1 %A A354296 _Vaclav Kotesovec_, May 23 2022