This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354300 #19 May 23 2022 17:22:25 %S A354300 0,1,3,5,7,8,12,13,15,31,63,88,127,129,131,244,255,262,263,288,300, %T A354300 344,511,793,914,1012,1023,1045,1116,1196,1538,1549,1565,1652,1817, %U A354300 1931,1989,2047,2067,2096,2459,2548,2862,2918,2961,3372,3478,3540,3588,3673,3707 %N A354300 Numbers k such that k! and (k+1)! have the same binary weight (A000120). %C A354300 Numbers k such that A079584(k) = A079584(k+1). %C A354300 The corresponding values of A079584(k) are 1, 1, 2, 4, 6, 6, 12, 12, 18, 42, ... %C A354300 This sequence is infinite as it contains A000225. - _Rémy Sigrist_, May 23 2022 %H A354300 Amiram Eldar, <a href="/A354300/b354300.txt">Table of n, a(n) for n = 1..1000</a> %e A354300 1 is a term since A079584(1) = A079584(2) = 1. %e A354300 3 is a term since A079584(3) = A079584(4) = 2. %t A354300 s[n_] := s[n] = DigitCount[n!, 2, 1]; Select[Range[0, 4000], s[#] == s[# + 1] &] %o A354300 (Python) %o A354300 from itertools import count, islice %o A354300 def wt(n): return bin(n).count("1") %o A354300 def agen(): # generator of terms %o A354300 n, fn, fnplus, wtn, wtnplus = 0, 1, 1, 1, 1 %o A354300 for n in count(0): %o A354300 if wtn == wtnplus: yield n %o A354300 fn, fnplus = fnplus, fnplus*(n+2) %o A354300 wtn, wtnplus = wtnplus, wt(fnplus) %o A354300 print(list(islice(agen(), len(data)))) # _Michael S. Branicky_, May 23 2022 %o A354300 (PARI) isok(k) = hammingweight(k!) == hammingweight((k+1)!); \\ _Michel Marcus_, May 23 2022 %Y A354300 A354301 is a subsequence. %Y A354300 Cf. A000120, A000142, A000225, A079584, A353986. %K A354300 nonn,base %O A354300 1,3 %A A354300 _Amiram Eldar_, May 23 2022