This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354301 #9 May 23 2022 17:22:35 %S A354301 0,7,12,262,12887667 %N A354301 Numbers k such that k!, (k+1)! and (k+2)! have the same binary weight (A000120). %C A354301 Numbers k such that A079584(k) = A079584(k+1) = A079584(k+2). %C A354301 The corresponding values of A079584(k) are 1, 6, 12, 747, 136453086, ... %e A354301 7 is a term since A079584(7) = A079584(8) = A079584(9) = 6. %e A354301 12 is a term since A079584(12) = A079584(13) = A079584(14) = 12. %t A354301 s[n_] := s[n] = DigitCount[n!, 2, 1]; Select[Range[0, 300], s[#] == s[# + 1] == s[# + 2] &] %o A354301 (Python) %o A354301 from itertools import count, islice %o A354301 def wt(n): return bin(n).count("1") %o A354301 def agen(): # generator of terms %o A354301 n, fn, fn1, fn2, wtn, wtn1, wtn2 = 0, 1, 1, 2, 1, 1, 1 %o A354301 for n in count(0): %o A354301 if wtn == wtn1 == wtn2: yield n %o A354301 fn, fn1, fn2 = fn1, fn2, fn2*(n+3) %o A354301 wtn, wtn1, wtn2 = wtn1, wtn2, wt(fn2) %o A354301 print(list(islice(agen(), 4))) # _Michael S. Branicky_, May 23 2022 %Y A354301 Subsequence of A354300. %Y A354301 Cf. A000120, A000142, A079584, A353987. %K A354301 nonn,base,more %O A354301 1,2 %A A354301 _Amiram Eldar_, May 23 2022