cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354303 a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.

This page as a plain text file.
%I A354303 #6 May 24 2022 02:39:07
%S A354303 1,1,4,18,576,2400,518400,12700800,541900800,65840947200,
%T A354303 13168189440000,88519495680000,229442532802560000,
%U A354303 19387894021816320000,2533351485517332480000,855006126362099712000000,437763136697395052544000000,1621968544942912438272000000
%N A354303 a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.
%F A354303 Denominators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).
%e A354303 1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
%t A354303 Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
%t A354303 nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
%Y A354303 Cf. A001044, A006040, A053556, A061355, A070910, A143383, A354302 (numerators), A354305.
%K A354303 nonn,frac
%O A354303 0,3
%A A354303 _Ilya Gutkovskiy_, May 23 2022