This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354314 #12 May 24 2022 08:13:53 %S A354314 1,0,2,9,60,495,4986,58401,780984,11749779,196446870,3612882933, %T A354314 72484364052,1575418827879,36875093680530,924769734574185, %U A354314 24737895033896304,703105981990977915,21159355356941587470,672148402091190649629,22475238194908656800460 %N A354314 Expansion of e.g.f. 1/(1 - x/3 * (exp(3 * x) - 1)). %F A354314 a(0) = 1; a(n) = Sum_{k=2..n} k * 3^(k-2) * binomial(n,k) * a(n-k). %F A354314 a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * k! * Stirling2(n-k,k)/(n-k)!. %o A354314 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/3*(exp(3*x)-1)))) %o A354314 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*3^(j-2)*binomial(i, j)*v[i-j+1])); v; %o A354314 (PARI) a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*stirling(n-k, k, 2)/(n-k)!); %Y A354314 Cf. A052848, A354313. %Y A354314 Cf. A288834, A328182, A353999, A354312. %K A354314 nonn %O A354314 0,3 %A A354314 _Seiichi Manyama_, May 23 2022