A354329 Triangular number nearest to the sum of the first n positive triangular numbers.
0, 1, 3, 10, 21, 36, 55, 78, 120, 171, 210, 276, 351, 465, 561, 666, 820, 990, 1128, 1326, 1540, 1770, 2016, 2278, 2628, 2926, 3240, 3655, 4095, 4465, 4950, 5460, 5995, 6555, 7140, 7750, 8385, 9180, 9870, 10731, 11476, 12403, 13203, 14196, 15225, 16290, 17205
Offset: 0
Examples
a(4) = 21 because the sum of the first 4 positive triangular numbers is 1 + 3 + 6 + 10 = 20, and the nearest triangular number is 21.
Links
- Wikipedia, Triangular number.
Programs
-
Mathematica
nterms=100;Table[t=Floor[Sqrt[n(n+1)(n+2)/3]];(t^2+t)/2,{n,0,nterms-1}]
-
PARI
a(n)=my(t=sqrtint(n*(n+1)*(n+2)/3));(t^2+t)/2; vector(100,n,a(n-1))
-
Python
from math import isqrt def A354329(n): return (m:=isqrt(n*(n*(n + 3) + 2)//3))*(m+1)>>1 # Chai Wah Wu, Jul 15 2022
Formula
a(n) = (t^2+t)/2, where t = floor(sqrt(n*(n+1)*(n+2)/3)).