cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354335 a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.

This page as a plain text file.
%I A354335 #12 May 24 2022 12:55:14
%S A354335 1,2,24,720,4480,518400,479001600,29059430400,20922789888000,
%T A354335 6402373705728000,810967336058880000,1124000727777607680000,
%U A354335 88635485961891348480000,14936720782466875392000000,27717122237428532772864000000,265252859812191058636308480000000
%N A354335 a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.
%F A354335 Denominators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).
%e A354335 1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
%t A354335 Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
%t A354335 nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
%o A354335 (PARI) a(n) = denominator(sum(k=0, n, 1/(2*k)!)); \\ _Michel Marcus_, May 24 2022
%o A354335 (Python)
%o A354335 from fractions import Fraction
%o A354335 from math import factorial
%o A354335 def A354335(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).denominator # _Chai Wah Wu_, May 24 2022
%Y A354335 Cf. A010050, A053556, A061355, A073743, A143383, A354331, A354333, A354334 (numerators).
%K A354335 nonn,frac
%O A354335 0,2
%A A354335 _Ilya Gutkovskiy_, May 24 2022