cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354339 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * (k/d)^d) )/(n-k)!.

This page as a plain text file.
%I A354339 #13 Aug 15 2022 08:37:28
%S A354339 1,4,13,47,188,939,5332,36196,279085,2464592,23591753,259110191,
%T A354339 3030440580,38874240339,535736880460,8027897509136,126034992483809,
%U A354339 2144006461602308,38072688073456557,723023026186433271,14342481336066795732,301141522554921194275
%N A354339 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * (k/d)^d) )/(n-k)!.
%F A354339 a(n) = Sum_{k=1..n} A308345(k) * binomial(n,k).
%F A354339 E.g.f.: -exp(x) * Sum_{k>0} log(1-x^k/k).
%o A354339 (PARI) a308345(n) = n!*sumdiv(n, d, 1/(d*(n/d)^d));
%o A354339 a(n) = sum(k=1, n, a308345(k)*binomial(n, k));
%o A354339 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, log(1-x^k/k))))
%Y A354339 Cf. A308345, A356406.
%K A354339 nonn
%O A354339 1,2
%A A354339 _Seiichi Manyama_, Aug 15 2022