cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354341 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * ((k/d)!)^d) )/(n-k)!.

This page as a plain text file.
%I A354341 #12 Aug 15 2022 08:37:23
%S A354341 1,4,12,38,130,557,2877,18314,136458,1180457,11389081,122833207,
%T A354341 1446973931,18594740348,257507754524,3835059283282,60937544854850,
%U A354341 1030871972064485,18469079943443229,349656695460113159,6969526853682012755,145958486484692023936
%N A354341 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * ((k/d)!)^d) )/(n-k)!.
%F A354341 a(n) = Sum_{k=1..n} A182926(k) * binomial(n,k).
%F A354341 E.g.f.: -exp(x) * Sum_{k>0} log(1-x^k/k!).
%o A354341 (PARI) a182926(n) = n!*sumdiv(n, d, 1/(d*(n/d)!^d));
%o A354341 a(n) = sum(k=1, n, a182926(k)*binomial(n, k));
%o A354341 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, log(1-x^k/k!))))
%Y A354341 Cf. A182926, A354339, A356407.
%K A354341 nonn
%O A354341 1,2
%A A354341 _Seiichi Manyama_, Aug 15 2022