This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354345 #6 May 25 2022 09:14:25 %S A354345 26,39,74,104,111,117,122,146,183,195,219,296,314,333,386,471,488,549, %T A354345 554,555,579,584,626,657,794,831,842,914,915,939,1082,1095,1191,1226, %U A354345 1256,1263,1322,1346,1371,1413,1466,1514,1544,1623,1737,1754,1839,1983,1994,2019,2186,2199,2216,2271,2306,2355,2402,2426 %N A354345 Numbers k such that k = x * A005383(i), where x is either 2, 3, 8, 9 or 15 and i > 2 [i.e., A005383(i) > 5]. %C A354345 Solutions to phi(n) = phi(sigma(n)) that are given by Theorem 3 of Golomb's manuscript, i.e., a subset of all solutions (A006872). %H A354345 S. W. Golomb, <a href="/A006872/a006872_1.pdf">Equality among number-theoretic functions</a>, Unpublished manuscript. (Annotated scanned copy) %F A354345 For all n >= 1, A353636(a(n)) = 0. %o A354345 (PARI) %o A354345 A354344(n) = { if(!(n%15),n/=15,if(!(n%9),n/=9,if(!(n%8),n/=8,if(!(n%3),n/=3,if(!(n%2),n/=2,return(0)))))); ((n>5) && isprime(n) && isprime((1+n)/2)); }; %o A354345 isA354345(n) = A354344(n); %Y A354345 Setwise difference A006872 \ A260021. Subset of positions of zeros in A353636. %Y A354345 Cf. A005383, A354344 (characteristic function). %K A354345 nonn %O A354345 1,1 %A A354345 _Antti Karttunen_, May 25 2022