This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354363 #15 Jun 02 2022 14:48:20 %S A354363 1,4,6,13,8,12,12,40,31,8,14,78,18,12,24,121,20,124,24,104,12,28,30, %T A354363 120,57,36,156,156,32,24,38,364,42,20,24,403,42,24,18,40,44,12,48,182, %U A354363 248,60,54,726,133,228,60,234,60,156,56,120,24,32,62,312,68,76,372,1093,72,84,72,260,30,24,74,1240,80,84 %N A354363 a(n) = LCM_{p^e||n} (q^(e+1)-1)/(q-1), when n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n, and q = nextPrime(p). %H A354363 Antti Karttunen, <a href="/A354363/b354363.txt">Table of n, a(n) for n = 1..20000</a> %H A354363 Antti Karttunen, <a href="/A354363/a354363.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A354363 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A354363 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A354363 a(n) = LCM_{p^e||n} A003973(p^e), when n = Product_{p^e||n}. %F A354363 a(n) = A353783(A003961(n)). %F A354363 a(n) = A003973(n) / A354364(n). %o A354363 (PARI) %o A354363 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A354363 A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); }; %o A354363 A354363(n) = A353783(A003961(n)); %o A354363 (PARI) %o A354363 A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; %o A354363 A354363(n) = { my(f=factor(n)~); lcm(vector(#f, i, A003973(f[1, i]^f[2, i]))); }; %Y A354363 Cf. A003961, A003973, A151800, A353783, A354364. %K A354363 nonn %O A354363 1,2 %A A354363 _Antti Karttunen_, May 30 2022