cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354371 Square array read by antidiagonals such that the sum of the digits inside any 2 X 2 square is itself a square.

This page as a plain text file.
%I A354371 #15 Jun 25 2022 22:03:44
%S A354371 1,2,3,4,12,5,6,7,14,11,16,8,10,13,17,19,22,9,15,20,26,27,69,31,18,40,
%T A354371 34,32,42,78,49,21,24,30,41,43,46,51,33,23,25,39,37,44,64,68,59,54,48,
%U A354371 28,29,38,58,74,70,72,92,52,63,36,35,87,101,98,80,82,84,177,121,65,60,45,96,53,103,76
%N A354371 Square array read by antidiagonals such that the sum of the digits inside any 2 X 2 square is itself a square.
%C A354371 This is the lexicographically earliest permutation of the positive integers with this property.
%e A354371 Array:
%e A354371 .
%e A354371     1,   2,   4,   6,  16,  19,  27,  42,  46,  68,  72,  84, 120, 138, 156, ...
%e A354371     3,  12,   7,   8,  22,  69,  78,  51,  59,  92, 177,  94, 134, 175, 165, ...
%e A354371     5,  14,  10,   9,  31,  49,  33,  54,  52, 121, 132, 195, 166, 249, 162, ...
%e A354371    11,  13,  15,  18,  21,  23,  48,  63,  65,  77,  75,  97, 131, 178, 171, ...
%e A354371    17,  20,  40,  24,  25,  28,  36,  60,  55,  86,  81,  93, 169, 147, 174, ...
%e A354371    26,  34,  30,  39,  29,  35,  45,  57,  62, 130,  90, 150, 200, 289, 303, ...
%e A354371    32,  41,  37,  38,  87,  96,  89,  47,  50,  71, 186, 204, 146, 202, 205, ...
%e A354371    43,  44,  58, 101,  53,  56, 105, 110,  61,  79,  73, 113, 149, 142, 198, ...
%e A354371    64,  74,  98, 103,  83, 114,  67, 112,  66,  95, 108, 100, 140, 145, 194, ...
%e A354371    70,  80,  76, 159, 123,  85, 179, 168,  99, 104, 107, 115, 129, 153, 210, ...
%e A354371    82, 119, 188, 199, 117, 116, 128, 141,  91,  88, 106, 102, 158, 185, 163, ...
%e A354371   109, 122, 111, 118, 137, 125, 126, 127, 136, 139, 148, 157, 213, 258, 172, ...
%e A354371   124, 167, 176, 135, 222, 155, 143, 144, 133, 231, 197, 240, 164, 211, 214, ...
%e A354371   151, 152, 184, 193, 161, 173, 298, 229, 160, 187, 154, 196, 201, 189, 223, ...
%e A354371   170, 238, 267, 206, 232, 181, 180, 215, 224, 203, 212, 221, 183, 259, 233, ...
%e A354371   ...
%e A354371 .
%e A354371 The sum of the digits inside the upper 2 X 2 squares is (1 + 2) + (3 + 1 + 2) = 9 (a square);
%e A354371 The sum of the digits inside the next horizontal 2 X 2 square is (2 + 4) + (1 + 2 + 7) = 16 (a square);
%e A354371 The sum of the digits inside the next horizontal 2 X 2 square is (4 + 6) + (7 + 8) = 25 (a square);
%e A354371 ...
%e A354371 The sum of the digits inside the 2nd vertical 2 X 2 square on the left is (3 + 1 + 2) + (5 + 1 + 4) = 16 (a square);
%e A354371 The sum of the digits inside the next vertical 2 X 2 square on the left is (5 + 1 + 4) + (1 + 1 + 1 + 3) = 16 (a square);
%e A354371 ...
%e A354371 The sum of the digits inside the lower right 2 X 2 square is (1 + 8 + 9) + (2 + 2 + 3) + (2 + 5 + 9) + (2 + 3 + 3) = 49 (a square); etc.
%Y A354371 Cf. A325785.
%K A354371 tabl,nonn
%O A354371 1,2
%A A354371 _Eric Angelini_ and _Carole Dubois_, May 24 2022