This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354374 #7 Jun 25 2022 22:04:18 %S A354374 0,1,2,4,3,6,5,8,11,7,9,10,12,14,17,13,15,19,39,24,16,23,29,5999,33, %T A354374 18,25,42,69,699,20,26,21,999,299,599,22,28,30,31,34,38,27,37,36,40, %U A354374 59,4999,43,32,35,41,49,102,47,69999,44,45,48,99,58,52,111,689,46,51,698,79999,9999999,50,68 %N A354374 Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a prime and those sums themselves form another infinite 2D square lattice with the same property. %C A354374 This is the earliest permutation of the nonnegative integers with this property. %e A354374 The spiral begins: %e A354374 . %e A354374 16--23--29-5999-33--18 %e A354374 | | %e A354374 24 5---8--11---7 25 %e A354374 | | | | %e A354374 39 6 0---1 9 42 %e A354374 | | | | | %e A354374 19 3---4---2 10 69 %e A354374 | | | %e A354374 15--13--17--14--12 699 %e A354374 | %e A354374 ... 999--21--26--20 %e A354374 . %e A354374 The digits of the four integers inside each of the four 2 X 2 squares that contain the initial 0 add up to a prime: 0 + 1 + 2 + 4 = 7, 0 + 4 + 3 + 6 = 13, 0 + 6 + 5 + 8 = 19, 0 + 8 + (1+1) + 1 = 11. This is true for any 2 X 2 square on the (infinite) grid; the upper right corner adds up to the prime 29, for instance: (3+3) + (1+8) + (2+5) + 7 = 29; etc. %e A354374 All those successive "prime sums" form the hereunder "second-level" spiral: %e A354374 . %e A354374 37--19--43 ... %e A354374 | %e A354374 43 11--19--19--23 %e A354374 | | | %e A354374 31 13 7--13 31 %e A354374 | | | | %e A354374 29 19--11--19 29 %e A354374 | | %e A354374 29--47--53--29--23 %e A354374 . %e A354374 Though the terms of this new spiral are not distinct, the sum of the digits inside any 2 X 2 square is prime again; the upper left 2 X 2 square produces the prime 29 = (3+7) + (1+9) + (1+1) + (4+3); the lower left 2 X 2 square produces the prime 43 = (2+9) + (1+9) + (4+7) + (2+9); the lower right 2 X 2 square produces the prime 37 = (1+9) + (2+9) + (2+3) + (2+9); the initial "center square" produces the prime 23 = 7 + (1+3) + (1+9) + (1+1); etc. %Y A354374 Cf. A337115, A337116, A337117, A337368, A354372, A354373, A354375. %K A354374 base,nonn %O A354374 1,3 %A A354374 _Eric Angelini_ and _Carole Dubois_, May 24 2022