This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354375 #9 Jun 25 2022 22:04:28 %S A354375 0,1,2,6,3,999,4,5,12,7,799,8,9,89,29,79,10,88,8999,69,11,78,39,97,19, %T A354375 13,87,7999,59,14,15,169,39999,68,49999,699,16,22,96,159,178,21,17, %U A354375 599,59999,49,58999,168,25,18,187,100,4999,20,177,28,23,186,89999,99999,199999,98999,9999,77,24,27 %N A354375 Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a square and those sums themselves form another infinite 2D square lattice with the same property. %C A354375 This is the earliest permutation of the nonnegative integers with this property. %e A354375 The spiral begins: %e A354375 . %e A354375 11--78--39--97--19--13 %e A354375 | | %e A354375 69 4---5--12---7 87 %e A354375 | | | | %e A354375 8999 999 0---1 799 7999 %e A354375 | | | | | %e A354375 88 3---6---2 8 59 %e A354375 | | | %e A354375 10--79--29--89---9 14 %e A354375 | %e A354375 ... 39999-169-15 %e A354375 . %e A354375 The digits of the four integers inside each of the four 2 X 2 squares that contain the initial 0 add up to a square: 0 + 1 + 2 + 6 = 9, 0 + 6 + 3 + (9+9+9) = 36, 0 + 999 + 4 + 5 = 36, 0 + 5 + (1+2) + 1 = 9. This is true for any 2 X 2 square on the (infinite) grid; the digits of the upper right corner add up to 36, for instance: (1+9) + (1+3) + (8+7) + 7 = 36; the lower right 2 X 2 square produces 36 = 9 + (1+4) + (1+5) + (1+6+9); etc. %e A354375 All those successive "square sums" form the hereunder "second-level" spiral: %e A354375 . %e A354375 36---9--36--81 %e A354375 | | %e A354375 36 9--36 81 %e A354375 | | | %e A354375 36--36--36 36 %e A354375 | %e A354375 ... 81--36 %e A354375 . %e A354375 Though the terms of this new spiral are not distinct (only multiples of 9), the sum of the digits inside any 2 X 2 square is a square again; the upper left 2 X 2 square produces for instance the square 36 = (3+6) + 9 + 9 + (3+6); the lower left 2 X 2 square produces the square 36 again = (3+6) + 9 + (3+6) + (3+6); the lower right 2 X 2 square produces also the square 36 = (3+6) + (3+6) + (3+6) + (8+1); the initial "center square" produces the same 36 = 9 + (3+6) + (3+6) + (3+6); etc. %Y A354375 Cf. A337115, A337116, A337117, A337368, A354372, A354373, A354374. %K A354375 nonn,base %O A354375 1,3 %A A354375 _Eric Angelini_ and _Carole Dubois_, May 24 2022