cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354381 Primitive elements in A354379, being those not divisible by any previous term.

This page as a plain text file.
%I A354381 #26 May 11 2023 09:15:31
%S A354381 25,65,85,89,109,145,149,169,173,185,205,221,229,233,265,289,293,305,
%T A354381 313,349,353,365,377,409,421,433,449,461,481,485,493,505,509,533,565,
%U A354381 601,613,629,641,653,677,685,689,697,709,757,761,769,773,785,793,797,821,829,841,857,877,881,901,905
%N A354381 Primitive elements in A354379, being those not divisible by any previous term.
%H A354381 Robert Israel, <a href="/A354381/b354381.txt">Table of n, a(n) for n = 1..10000</a>
%e A354381 The primitive Pythagorean triple (39, 80, 89) has all its terms in A009003, and 89 is not divisible by any previous term. Hence 89 is in sequence.
%p A354381 ishyp:= proc(n) local s; ormap(s -> s mod 4 = 1, numtheory:-factorset(n)) end proc:
%p A354381 filter:= proc(n) local s;
%p A354381   ormap(s -> ishyp(subs(s,x)) and ishyp(subs(s,y)), [isolve(x^2+y^2=n^2)])
%p A354381 end proc:
%p A354381 R:= []: count:= 0:
%p A354381 for n from 1 while count < 100 do
%p A354381   if ormap(t -> n mod t = 0, R) then next fi;
%p A354381   if filter(n) then R:= [op(R),n]; count:= count+1; fi
%p A354381 od:
%p A354381 R; # _Robert Israel_, Jan 10 2023
%t A354381 ishyp[n_] := AnyTrue[ FactorInteger[n][[All, 1]], Mod[#, 4] == 1 &] ;
%t A354381 filter[n_] := AnyTrue[Solve[x^2 + y^2 == n^2, Integers], ishyp[x /. #] && ishyp[y /. #] &];
%t A354381 R = {}; count = 0;
%t A354381 For[n = 1, count < 100, n++, If[AllTrue[R, Mod[n, #] != 0&], If[filter[n], AppendTo[R, n]; count++]]];
%t A354381 R (* _Jean-François Alcover_, May 11 2023, after _Robert Israel_ *)
%Y A354381 Cf. A009003, A008846, A020882, A004613, A354379.
%K A354381 nonn
%O A354381 1,1
%A A354381 _Lamine Ngom_, May 24 2022
%E A354381 Corrected by _Robert Israel_, Jan 10 2023