cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354390 Expansion of e.g.f. 1/(1 + log(1 + x)^4 / 24).

This page as a plain text file.
%I A354390 #9 May 25 2022 09:15:16
%S A354390 1,0,0,0,-1,10,-85,735,-6699,64764,-662780,7139000,-80273116,
%T A354390 931853208,-10990479136,128253707400,-1402525474414,12224484229744,
%U A354390 -9767136488568,-3662083220408136,144120068237692294,-4329792070579951500,118808185600297890950
%N A354390 Expansion of e.g.f. 1/(1 + log(1 + x)^4 / 24).
%F A354390 a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * Stirling1(k,4) * a(n-k).
%F A354390 a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling1(n,4*k)/(-24)^k.
%o A354390 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1+x)^4/24)))
%o A354390 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 4, 1)*v[i-j+1])); v;
%o A354390 (PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 1)/(-24)^k);
%Y A354390 Cf. A346923, A354318, A354389, A354393.
%K A354390 sign
%O A354390 0,6
%A A354390 _Seiichi Manyama_, May 25 2022