cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354397 Expansion of e.g.f. exp( -(exp(x) - 1)^4 / 24 ).

This page as a plain text file.
%I A354397 #12 May 25 2022 09:15:47
%S A354397 1,0,0,0,-1,-10,-65,-350,-1666,-6510,-7855,270050,4948669,63503440,
%T A354397 702095030,6924754200,58870214129,356043924590,-615569993285,
%U A354397 -74306502570650,-1783956267419536,-32695418069393310,-520090808927130925,-7317310078355307250,-87056749651694635451
%N A354397 Expansion of e.g.f. exp( -(exp(x) - 1)^4 / 24 ).
%F A354397 a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,4) * a(n-k).
%F A354397 a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/((-24)^k * k!).
%o A354397 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^4/24)))
%o A354397 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 2)*v[i-j+1])); v;
%o A354397 (PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/((-24)^k*k!));
%Y A354397 Cf. A000587, A354395, A354396, A354398.
%Y A354397 Cf. A327505, A354393.
%K A354397 sign
%O A354397 0,6
%A A354397 _Seiichi Manyama_, May 25 2022