This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354408 #46 Aug 12 2022 20:18:17 %S A354408 0,1,1,2,4,2,13,13,13,13,80,82,80,82,80,579,579,579,579,579,579,4738, %T A354408 4740,4738,4752,4738,4740,4738,43387,43387,43390,43387,43387,43390, %U A354408 43387,43387,439792,439794,439792,439794,440192,439794,439792,439794,439792 %N A354408 Triangle read by rows of generalized ménage numbers: T(n,k) is the number of permutations pi in S_n such that pi(i) != i and pi(i) != i+k (mod n) for all i; n, 1 <= k < n. %C A354408 Conjectures: (Start) %C A354408 T(n,1) <= T(n,k) for all 1 < k < n. %C A354408 With the exception of T(6,3) = 80, T(n,k) > T(n,1) whenever gcd(n,k) > 1. (End) %H A354408 Brian Moehring, <a href="https://math.stackexchange.com/q/4458625/121988#comment9340570_4458625">Counting permutations pi in S_n such that pi(i) != i and pi(i) - k != i mod n</a>, Mathematics Stack Exchange. %F A354408 T(n,1) = A000179(n). %F A354408 T(n,k) = T(n,n-k). %F A354408 T(n,k) = A341439(k,n). %F A354408 T(n,k) = A000179(n) if k is coprime to n. %F A354408 T(n,j) = T(n,k) if gcd(n,j) = gcd(n,k). - _Pontus von Brömssen_, May 30 2022 %F A354408 Conjecture: T(n,j) < T(n,k) if gcd(n,j) < gcd(n,k) and (n,k) != (6,3). - _Pontus von Brömssen_, May 31 2022 %e A354408 Triangle begins: %e A354408 n\k| 1 2 3 4 5 6 7 8 %e A354408 -----+------------------------------------------------ %e A354408 2 | 0 %e A354408 3 | 1 1 %e A354408 4 | 2 4 2 %e A354408 5 | 13 13 13 13 %e A354408 6 | 80 82 80 82 80 %e A354408 7 | 579 579 579 579 579 579 %e A354408 8 | 4738 4740 4738 4752 4738 4740 4738 %e A354408 9 | 43387 43387 43390 43387 43387 43390 43387 43387 %e A354408 ... %o A354408 (Python) %o A354408 from sympy import Matrix %o A354408 def A354408(n,k): %o A354408 return Matrix(n,n,lambda i,j:int(i!=j and i!=(j+k)%n)).per() # _Pontus von Brömssen_, May 31 2022 %o A354408 (Python) %o A354408 # This version, based on the formula in A277256, is much faster than the version using permanents, at least for large n. %o A354408 from sympy import factorial,gcd,sqrt %o A354408 from sympy.abc import z %o A354408 def A354408(n,k): %o A354408 k=gcd(n,k) %o A354408 F=((1-sqrt(1+4*z))/2)**(2*(n//k))+((1+sqrt(1+4*z))/2)**(2*(n//k)) %o A354408 p=(F**k).series(z,0,n+1) %o A354408 return sum((-1)**j*factorial(n-j)*p.coeff(z,j) for j in range(n+1)) # _Pontus von Brömssen_, Jun 02 2022 %Y A354408 Cf. A277256, A341439, A354409 (record values in rows). %Y A354408 Cf. A000179 (column 1), A354152 (column 2). %K A354408 nonn,tabl %O A354408 2,4 %A A354408 _Peter Kagey_, May 25 2022