cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354410 Numbers with as many zeros as the sum of their digits.

This page as a plain text file.
%I A354410 #33 Jan 12 2023 18:31:55
%S A354410 10,200,1001,1010,1100,3000,10002,10020,10200,12000,20001,20010,20100,
%T A354410 21000,40000,100003,100011,100030,100101,100110,100300,101001,101010,
%U A354410 101100,103000,110001,110010,110100,111000,130000,200002,200020,200200,202000,220000
%N A354410 Numbers with as many zeros as the sum of their digits.
%C A354410 As is normal, there are no leading zeros. The places of k zeros and the nonzero digits that are partitions of k are combinatorial.
%C A354410 Numbers k such that A007953(k) = A055641(k). - _Felix Fröhlich_, May 26 2022
%H A354410 Rémy Sigrist, <a href="/A354410/a354410.gp.txt">PARI program</a>
%t A354410 Select[Range[250000],DigitCount[#,10,0]==Total[IntegerDigits[#]]&] (* _Harvey P. Dale_, Jan 12 2023 *)
%o A354410 (PARI) isok(m) = my(d=digits(m)); vecsum(d) == #select(x->(x==0), d); \\ _Michel Marcus_, May 26 2022
%o A354410 (PARI) See Links section.
%o A354410 (Python) # after linked PARI by _Rémy Sigrist_
%o A354410 base, vv, nb = 10, [0], 0
%o A354410 def visit(v, s, z, r):
%o A354410     global base, vv, nb
%o A354410     if v and s==z:
%o A354410         nb += 1
%o A354410         if nb > len(vv): vv.append(len(vv))
%o A354410         vv[nb-1] = v
%o A354410     if s-z-r <= 0 and s-z+(base-1)*r >= 0:
%o A354410         if v: visit(base*v, s, z+1, r-1)
%o A354410         for d in range(1, base): visit(base*v+d, s+d, z, r-1)
%o A354410 def auptod(digits): visit(0, 0, 0, digits); return sorted(set(vv))
%o A354410 print(auptod(6)) # _Michael S. Branicky_, May 26 2022
%Y A354410 Subsequence of A011540.
%Y A354410 Cf. A007953 (sum of digits), A055641 (number of 0's).
%Y A354410 Cf. A031443, A061384.
%K A354410 nonn,base
%O A354410 1,1
%A A354410 _Tamas Sandor Nagy_, May 25 2022