cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354416 Expansion of e.g.f. (1 - log(1-x))^x.

This page as a plain text file.
%I A354416 #14 Jun 08 2022 09:18:07
%S A354416 1,0,2,0,16,5,288,392,9840,33462,582910,3652044,55557192,524095728,
%T A354416 7910319116,98390834310,1573086910848,23774700449584,414180226506456,
%U A354416 7249907657342184,138771378745878680,2735366111451910944,57469663931297252976,1253755421949789141624
%N A354416 Expansion of e.g.f. (1 - log(1-x))^x.
%F A354416 a(0) = 1; a(n) = Sum_{k=1..n} k * A089064(k-1) * binomial(n-1,k-1) * a(n-k).
%F A354416 a(n) ~ (n-1)!. - _Vaclav Kotesovec_, Jun 08 2022
%o A354416 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-log(1-x))^x))
%o A354416 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^j*j*sum(k=1, j-1, (k-1)!*stirling(j-1, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A354416 Cf. A089064, A351739, A354083.
%K A354416 nonn
%O A354416 0,3
%A A354416 _Seiichi Manyama_, May 26 2022